Por William Kremer
Servicio Mundial de la BBC
¿Por qué encontramos pepitas de oro en la superficie de la Tierra?
Para los jefes tribales de la América precolombina, el deslumbrante amarillo del oro que encontraban en el fondo de los riachuelos o enterrado bajo el piso rocoso simbolizaba el poder del dios sol. Por eso se vestían con armaduras de batalla forjadas con el metal encantado confiados de que les protegería.
Pero sufrieron una decepción.
El oro, un metal inusualmente suave, no tenía nada que hacer frente al acero de los españoles. Pero puede que los indígenas americanos no estuviesen tan despistados al creer que ese elemento era de otro mundo.
"¿Por qué encontramos pepitas de oro en la superficie de la Tierra?", pregunta el escritor científico John Emsley. "La respuesta a eso es que han llegado del espacio en forma de meteoritos".
Esta teoría ha sido adoptada en las últimas décadas por la mayoría de los científicos como una forma de explicar la abundancia de oro sobre la Tierra. Se cree que nuestro planeta tiene 1,3 gramos de oro por cada 1.000 toneladas de otro tipo de materiales de la corteza terrestre (la cáscara rocosa del planeta tiene unas 25 millas de espesor -más de 40 kilómetros-), una cifra demasiado alta como para encajar con los modelos estándares de formación de nuestro planeta.
Después de su nacimiento hace 4.500 millones de años, la superficie de la Tierra estaba cubierta de volcanes y rocas fundidas. Después, durante decenas de millones de años, la mayoría del hierro se hundió a través de la capa exterior conocida como el manto hacia el núcleo de la Tierra. El oro se habría mezclado con el hierro y se habría hundido con él. Matthias Willbold, un geólogo del Imperial College de Londres, compara ese proceso con el que sucede con las gotas de vinagre que se quedan en el fondo de un plato con aceite de oliva.
"Todo el oro debería haber desaparecido", afirma.
Otras teorías
Los científicos también empezaron a encontrar metales similares al oro en el manto a profundidades mucho mayores de lo que habían anticipado. Esto podría explicarse en caso de que la Tierra hubiera recibido un impacto de un bombardeo de meteoritos mucho mayor de lo que se creía originalmente y en un momento anterior de la historia. Pero, para Humayun, la teoría de la lluvia de meteoritos bañados, dejó de contestar viejas preguntas y comenzó a generar otras nuevas.
Él pertenece a un pequeño grupo de científicos que aboga por una teoría alternativa. Sugiere que todo el oro de la corteza de la Tierra -o la mayor parte de él- ya estaba en el planeta. La mayor parte se aleó con hierro y migró hacia el núcleo de la Tierra, pero una porción significativa -quizás un 0,2%- se disolvió en un "océano" de magma a 700 kilómetros de profundidad en el manto externo.
Más tarde, el oro resurgió hasta la corteza terrestre a través de la actividad volcánica.
Esta teoría requiere que el oro y otros elementos siderófilos sean más solubles de lo que se pensaba previamente; de otra manera insuficientes cantidades se hubieran disuelto en el magma.
Los experimentos de dos científicos de la NASA, Kevin Righter y Lisa Danielson, señalan que la solubilidad del oro en las rocas del manto efectivamente aumenta con la alta presión y la temperatura.
Sin embargo, por el momento no ha sido posible medir en el laboratorio la solubilidad de todos los elementos altamente siderófilos bajo una gama completa de temperaturas y presiones del manto terrestre, por lo que por ahora esta explicación propuesta para la abundancia de oro no pasa de ser otra hipótesis más.
Sin embargo, cada vez atrae más interés y se lanzó como contrapunto a la teoría de la lluvia de meteoritos bañados el mes pasado en un simposio internacional en Florencia.
Matthias Willbold, que asistió a la conferencia, explica que el consenso en ese foro era que la teoría de los meteoritos bañados sigue siendo la mejor explicación al inusual perfil de isótopos de tungsteno de las rocas de Groenlandia.
El científico añade que, al contrario que Humayun, la mayoría de los científicos cree que los meteoritos condríticos "encajan" con las concentraciones de metales en el manto y la corteza terrestre. Sin embargo, admite que la teoría de la lluvia de meteoritos todavía tiene hilos sueltos.
"Nunca puedes estar cien por cien seguro", afirma. "Pero la belleza de nuestro modelo por el momento es que todos los números coinciden". Sus medidas de isótopos indican que cerca del 0,5% de la masa del manto de la Tierra cayó en forma de meteoritos (por si se lo está preguntando, eso son 20 billones de toneladas). Esta cifra coincide con las mejores suposiciones de los geólogos basándose en las concentraciones totales de metales preciosos en el manto y la corteza de la Tierra.
Willibold describe esa equivalencia como una "prueba contundente".
Pero Humayun asegura que la medida en la que los geoquímicos creen en ello depende de su campo de estudio preciso.
Los geoquímicos analíticos -el grupo de investigadores que mide los rastros de elementos en las rocas- ven su investigación como crucial para la comprensión del surgimiento de la vida en la Tierra.
Sin embargo, Humayun asegura que los geoquímicos experimentales -los que tratan de recrear las condiciones del manto terrestre en el laboratorio- tienen la mente más abierta.
"¡Se trata de cómo haces dinero! Si eres experimentalista, con estos experimentos te comes el almuerzo de los chicos de la lluvia de meteoritos bañados".
"Ahora, el por qué a la comunidad analítica le gusta tanto la idea (del baño de meteoritos) me preocupa. Es por la relevancia que le han otorgado al origen de la vida. Hay mucho en juego", concluya.
William Kremer
Servicio Mundial de la BBC