Nuevas evidencias de que la vida terrestre empezó en Marte

 

Una forma de mineral oxidado del elemento químico molibdeno, que puede haber sido crucial para el origen de la vida, sólo pudo haber estado disponible en la superficie de Marte y no en la Tierra, según explicará este jueves el profesor Steven Benner, del Instituto Westheimer para Ciencia y Tecnología en Estados Unidos, en la Conferencia Anual de la Asociación Europea de Geoquímica, Goldschmidt, que se celebra en Florencia (Italia). "Estudios recientes muestran que estas condiciones, adecuadas para el origen de la vida, todavía pueden existir en Marte", afirma.

   "Sólo cuando se convierte en molibdeno muy oxidado que es capaz de influir en cómo se formó la vida temprana", explica el profesor Benner. "Esta forma de molibdeno no podría haber estado disponible en la Tierra en el tiempo en el que comenzó la vida comenzó porque hace 3.000 millones de años la superficie de la Tierra tenía muy poco oxígeno, pero Marte sí. Es otra muestra de evidencia que hace que sea más probable que la vida llegó a la Tierra en un meteorito marciano, en lugar de empezar en este planeta", añade.

   La investigación del profesor Benner se centra en dos de las paradojas que hacen que sea difícil entender cómo la vida pudo haber comenzado en la Tierra. La primera, denominada por este experto como "paradoja tar", consiste en que todos los seres vivos están hechos de materia orgánica, pero si se agrega energía como calor o luz a moléculas orgánicas y les deja a sí mismos, no crean vida, sino que se convierten en algo más parecido a alquitrán, aceite o asfalto.

 

Una forma de mineral oxidado del elemento químico molibdeno, que puede haber sido crucial para el origen de la vida, sólo pudo haber estado disponible en la superficie de Marte y no en la Tierra, según explicará este jueves el profesor Steven Benner, del Instituto Westheimer para Ciencia y Tecnología en Estados Unidos, en la Conferencia Anual de la Asociación Europea de Geoquímica, Goldschmidt, que se celebra en Florencia (Italia). "Estudios recientes muestran que estas condiciones, adecuadas para el origen de la vida, todavía pueden existir en Marte", afirma.

   "Sólo cuando se convierte en molibdeno muy oxidado que es capaz de influir en cómo se formó la vida temprana", explica el profesor Benner. "Esta forma de molibdeno no podría haber estado disponible en la Tierra en el tiempo en el que comenzó la vida comenzó porque hace 3.000 millones de años la superficie de la Tierra tenía muy poco oxígeno, pero Marte sí. Es otra muestra de evidencia que hace que sea más probable que la vida llegó a la Tierra en un meteorito marciano, en lugar de empezar en este planeta", añade.

   La investigación del profesor Benner se centra en dos de las paradojas que hacen que sea difícil entender cómo la vida pudo haber comenzado en la Tierra. La primera, denominada por este experto como "paradoja tar", consiste en que todos los seres vivos están hechos de materia orgánica, pero si se agrega energía como calor o luz a moléculas orgánicas y les deja a sí mismos, no crean vida, sino que se convierten en algo más parecido a alquitrán, aceite o asfalto.

"Ciertos elementos parecen ser capaces de controlar la propensión de los materiales orgánicos para convertirse en alquitrán, especialmente boro y molibdeno, por lo que creemos que estos minerales fueron fundamentales a la vida primera partida", dice el profesor Benner. "El análisis de un meteorito marciano mostró recientemente que había boro en Marte, ahora creemos que la forma oxidada del molibdeno también estaba allí", subrayó.

   La segunda paradoja es que la vida habría tenido problemas para iniciarse en la Tierra primitiva, ya que es probable que haya estado totalmente cubierta por el agua, lo que impide no sólo la formación de concentraciones suficientes de boro, que actualmente sólo se encuentran en lugares muy secos como el Valle de la Muerte, sino que el agua corroe el ARN, que los científicos creen que fue la primera molécula genética a aparecer. Aunque hubo agua en Marte, cubrió áreas mucho más pequeñas que en la Tierra primitiva.

   "La evidencia parece señalar que en realidad todos somos marcianos, que la vida empezó en Marte y vino a la Tierra en una roca", sentencia el profesor Benner, quien agrega que es una suerte que la vida llegara a la Tierra porque es "el mejor plantea de los dos para mantener la vida". "Si nuestros hipotéticos ancestros marcianos hubieran permanecido en Marte, no se podría haber contado su historia", concluye.

Fuente: Europa Press

Titán podría estar rodeada de una rígida capa de hielo

El análisis de la gravedad y la topografía de la luna de Saturno, Titán, obtenidos por 'Cassini', una nave espacial de la NASA, sugiere que la capa de hielo de Titán podría ser rígida y que las pocas elevaciones topográficas de su superficie podrían llevar asociadas grandes "raíces de hielo" que se adentrarían en el océano subyacente, según un estudio publicado este miércoles en Nature, difundido por la agencia espacial.

   En concreto, los científicos de la Universidad de California que dirigieron el estudio, Douglas Hemingway y Francis Nimmo, detectaron que la relación entre ambas variables presentaban valores contrarios a los esperados.

   Nimmo ha explicado que "en condiciones normales" sobre una montaña hay mayor gravedad debido a que hay mayor masa, mientras que en Titán resultó al revés.

   Según el estudio, en el que también ha participado la Agencia Espacial Europea y la Agencia Espacial Italiana, una posible explicación es que cada elevación de la topografía de la superficie de la luna está compensada por una 'raíz' profunda lo suficientemente grande como para compensar el efecto gravitacional de la protuberancia.

El análisis de la gravedad y la topografía de la luna de Saturno, Titán, obtenidos por 'Cassini', una nave espacial de la NASA, sugiere que la capa de hielo de Titán podría ser rígida y que las pocas elevaciones topográficas de su superficie podrían llevar asociadas grandes "raíces de hielo" que se adentrarían en el océano subyacente, según un estudio publicado este miércoles en Nature, difundido por la agencia espacial.

   En concreto, los científicos de la Universidad de California que dirigieron el estudio, Douglas Hemingway y Francis Nimmo, detectaron que la relación entre ambas variables presentaban valores contrarios a los esperados.

   Nimmo ha explicado que "en condiciones normales" sobre una montaña hay mayor gravedad debido a que hay mayor masa, mientras que en Titán resultó al revés.

   Según el estudio, en el que también ha participado la Agencia Espacial Europea y la Agencia Espacial Italiana, una posible explicación es que cada elevación de la topografía de la superficie de la luna está compensada por una 'raíz' profunda lo suficientemente grande como para compensar el efecto gravitacional de la protuberancia.

Así, la raíz actuaría como un iceberg, con la mayor parte de su masa dentro del océano que subyace bajo la capa de hielo, que aportaría menor densidad que si ese espacio estuviera ocupado por agua y además ejercería una fuerza hacia arriba que podría explicar la menor gravedad detectada.

   En este sentido, el autor principal de la investigación, Hemingway, ha señalado que esta raíz se comporta como "una gran bola de playa sumergida" que estuviera empujando la capa de hielo desde abajo y lo que explica que se mantenga hundida es que la capa de hielo es rígida y muy gruesa"

   Además, ha señalado que si estos datos fueran correctos, una capa de hielo tan fuerte haría muy difícil tener volcanes, lo que, según algunos científicos, explicaría ciertas características que se observan en la superficie.

   También, la información sugiere que no hay tectónica de placas como en la Tierra, es decir que la capa de hielo no se recicla.

Fuente: Europa Press

Una estrella idéntica al Sol pero 4.000 millones de años más vieja

 

Un grupo de investigadores ha encontrado una estrella "en esencia" idéntica al Sol pero 4.000 millones de años más vieja. Según los científicos, el hallazgo ayudará a estudiar la historia y futura evolución del Sol, así como a esclarecer la relación entre la edad de una estrella y su contenido de litio.

   El grupo de investigadores ha utilizado el 'Very Large Telescope' del Observatorio Europeo del Sur para observar el astro, HIP 102152, situado a 250 años luz de la Tierra, y creen además que podría albergar planetas rocosos en su órbita.

   El líder del equipo de científicos, Jorge Meléndez, ha destacado la "calidad excepcional" de los espectros que se han logrado captar de la estrella y ha explicado que, desde que se encontró el primer "gemelo solar", se han hallado muy pocos.

 

Un grupo de investigadores ha encontrado una estrella "en esencia" idéntica al Sol pero 4.000 millones de años más vieja. Según los científicos, el hallazgo ayudará a estudiar la historia y futura evolución del Sol, así como a esclarecer la relación entre la edad de una estrella y su contenido de litio.

   El grupo de investigadores ha utilizado el 'Very Large Telescope' del Observatorio Europeo del Sur para observar el astro, HIP 102152, situado a 250 años luz de la Tierra, y creen además que podría albergar planetas rocosos en su órbita.

   El líder del equipo de científicos, Jorge Meléndez, ha destacado la "calidad excepcional" de los espectros que se han logrado captar de la estrella y ha explicado que, desde que se encontró el primer "gemelo solar", se han hallado muy pocos.

Así, según el astrónomo, el descubrimiento permitirá comparar las investigaciones con otros "gemelos solares" para tratar de "responder a pregunta de qué tan especial es el Sol".

   El primer descubrimiento que ha aportado la observación de HIP 102152 podría ayudar a comprender por qué el contenido de litio en el Sol, material del que está formado, es "tan sorprendentemente bajo".

   Según el equipo de investigadores, la observación de gemelos menores que el Sol había mostrado que la cantidad de litio de estos astros era mayor que la de la estrella más cercana a la Tierra. Ahora, gracias al nuevo descubrimiento, se ha podido advertir que la cantidad de litio de HIP 102152 es menor que el sol.

   "Ahora podemos estar seguros de que las estrellas destruyen de alguna forma el litio que las compone a medida que envejecen", ha concluido la autora principal de la investigación, TalaWanda Monroe.

Fuente: Europa Press

Las algas podrían ayudar a enfriar el planeta

Las algas captan más CO2 atmosférico cuando la concentración de esta molécula en el aire sobrepasa las 500 partes por millón, situación que, según las emisiones actuales, se alcanzará "de sobra" antes de final de siglo, según un estudio del departamento de geología de la Universidad de Oviedo. De este modo, en declaraciones a Europa Press, la coautora, Heather Stoll, ha explicado que estas plantas podrían "ayudar a suavizar el aumento de este gas de efecto invernadero".

   Además, Stoll ha remarcado que otra de las conclusiones de la investigación, que se publicará este jueves en la revista Nature, es que una disminución del CO2 atmosférico fue el responsable del enfriamiento repentino del planeta hace entre siete y cinco millones de años. Por lo que, en última instancia, una mayor captura de dióxido de carbono por parte de las algas, podría contribuir al enfriamiento de la Tierra en un futuro cercano.

   El proyecto, financiado por el Consejo de Investigación Europeo (European Research Council), ha descubierto que la capa de carbonato cálcico que recubre un tipo de microalgas modifica su composición en función de si el carbono que la planta utiliza para su crecimiento es mayoritariamente el CO2, a través de la fotosíntesis, o no.

   Así, mediante el estudio de los fósiles de conchas que se han ido depositando en el fondo marino y que una vez pertenecieron a algas vivas, se ha podido estudiar de qué manera ha podido influir las fluctuaciones de dióxido de carbono en los últimos 60 millones de años, y, los resultados aclaran tanto la adaptación de las algas a distintas concentraciones de CO2, como el historial de cambios en el CO2 atmosférico.

Las algas captan más CO2 atmosférico cuando la concentración de esta molécula en el aire sobrepasa las 500 partes por millón, situación que, según las emisiones actuales, se alcanzará "de sobra" antes de final de siglo, según un estudio del departamento de geología de la Universidad de Oviedo. De este modo, en declaraciones a Europa Press, la coautora, Heather Stoll, ha explicado que estas plantas podrían "ayudar a suavizar el aumento de este gas de efecto invernadero".

   Además, Stoll ha remarcado que otra de las conclusiones de la investigación, que se publicará este jueves en la revista Nature, es que una disminución del CO2 atmosférico fue el responsable del enfriamiento repentino del planeta hace entre siete y cinco millones de años. Por lo que, en última instancia, una mayor captura de dióxido de carbono por parte de las algas, podría contribuir al enfriamiento de la Tierra en un futuro cercano.

   El proyecto, financiado por el Consejo de Investigación Europeo (European Research Council), ha descubierto que la capa de carbonato cálcico que recubre un tipo de microalgas modifica su composición en función de si el carbono que la planta utiliza para su crecimiento es mayoritariamente el CO2, a través de la fotosíntesis, o no.

   Así, mediante el estudio de los fósiles de conchas que se han ido depositando en el fondo marino y que una vez pertenecieron a algas vivas, se ha podido estudiar de qué manera ha podido influir las fluctuaciones de dióxido de carbono en los últimos 60 millones de años, y, los resultados aclaran tanto la adaptación de las algas a distintas concentraciones de CO2, como el historial de cambios en el CO2 atmosférico.

LA FOTOSÍNTESIS ES EL "PREFERIDO"

   En este sentido, la fotosíntesis, mecanismo que comparte con el resto de plantas de la Tierra, es la opción "preferida" de las algas para captar el carbono que necesitan para construir sus estructuras.

   Pero cuando hay poco dióxido de carbono en la atmósfera, este proceso se vuelve lento por lo que el alga ha desarrollado mecanismos para obtener carbono "extra" de compuestos disueltos abundantemente en los océanos como el bicarbonato sódico.

   Esta adaptación les permite vivir, pero les supone un coste energético mayor, por lo que cuando aumentan la disponibilidad del gas en el aire, vuelven a la fotosíntesis.

   Así, el estudio de los restos calcáreos demuestran que las algas empezaron a depender mucho de las fuentes de carbono "extra" en un periodo relativamente reciente, hace entre 7 y 5 millones de años.

   Stoll explica que estos datos indican que el CO2, en ese intervalo de tiempo, descendió de manera "crítica", un resultado que coincide con las evidencias del enfriamiento del océano".

   Por último, señala que hasta ahora las únicas medidas directas del CO2 del pasado se referían a los últimos 800.000 años y demostraban una relación muy estrecha entre temperatura y el CO2, pero en periodos mas fríos que el actual. Para periodos previos –durante los últimos diez millones de años– había que emplear indicadores indirectos.

Fuente: Europa Press

El meteorito de Cheliabinsk chocó con un objeto celeste o pasó muy cerca del Sol

El meteorito que cayó este año sobre Cheliabinsk (Rusia) chocó con otro cuerpo del sistema solar o llegó demasiado cerca del Sol antes de que cayera en la Tierra, según un estudio de un equipo del Instituto de Geología y Mineralogía (IGM) en Novosibirsk (Siberia, Rusia), presentadoen la conferencia de Goldschmidt que se celebra en Florencia (Italia). Los investigadores analizaron fragmentos del meteorito, cuyo cuerpo principal cayó al fondo del lago Chebarkul, cerca de Cheliabinsk, el pasado 15 de febrero.

   A pesar de que todos los fragmentos están compuestos de los mismos minerales, la estructura y la textura de algunos muestran que el meteorito había sido sometido a un intensivo proceso de fusión antes de que estuviera bajo temperaturas extremadamente altas al entrar en la atmósfera de la Tierra.

   "El meteorito que cayó cerca de Cheliabinsk es de un tipo conocido como condrita LL5 y es bastante común que esta clase sea sometida a un proceso de fusión antes de caer a la Tierra –dice el doctor Victor Sharygin, del IGM–. Esto seguramente significa que hubo una colisión entre el meteorito Cheliabinsk y otro cuerpo en el sistema solar".

   En base a su color y estructura, los investigadores del IGM han dividido los fragmentos de meteoritos en tres tipos: ligeros, oscuros e intermedios. Los más ligeros son los más comúnmente encontrados, pero los fragmentos oscuros se encuentran en un número creciente a lo largo de la trayectoria del meteorito, con la mayor cantidad hallada cerca del lugar donde impactó con la Tierra.

El meteorito que cayó este año sobre Cheliabinsk (Rusia) chocó con otro cuerpo del sistema solar o llegó demasiado cerca del Sol antes de que cayera en la Tierra, según un estudio de un equipo del Instituto de Geología y Mineralogía (IGM) en Novosibirsk (Siberia, Rusia), presentadoen la conferencia de Goldschmidt que se celebra en Florencia (Italia). Los investigadores analizaron fragmentos del meteorito, cuyo cuerpo principal cayó al fondo del lago Chebarkul, cerca de Cheliabinsk, el pasado 15 de febrero.

   A pesar de que todos los fragmentos están compuestos de los mismos minerales, la estructura y la textura de algunos muestran que el meteorito había sido sometido a un intensivo proceso de fusión antes de que estuviera bajo temperaturas extremadamente altas al entrar en la atmósfera de la Tierra.

   "El meteorito que cayó cerca de Cheliabinsk es de un tipo conocido como condrita LL5 y es bastante común que esta clase sea sometida a un proceso de fusión antes de caer a la Tierra –dice el doctor Victor Sharygin, del IGM–. Esto seguramente significa que hubo una colisión entre el meteorito Cheliabinsk y otro cuerpo en el sistema solar".

   En base a su color y estructura, los investigadores del IGM han dividido los fragmentos de meteoritos en tres tipos: ligeros, oscuros e intermedios. Los más ligeros son los más comúnmente encontrados, pero los fragmentos oscuros se encuentran en un número creciente a lo largo de la trayectoria del meteorito, con la mayor cantidad hallada cerca del lugar donde impactó con la Tierra.

Los fragmentos oscuros incluyen una gran proporción de material de grano fino y su estructura, textura y composición mineral muestra que se formaron por un proceso de fusión muy intenso, probablemente por una colisión con otro cuerpo o por proximidad al sol. Este material es distinto del de la corteza de fusión, la capa delgada de material en la superficie del meteorito que se funde y, a continuación, se solidifica a medida que viaja a través de la atmósfera de la Tierra.

   "De los muchos fragmentos que hemos estado analizando, sólo tres muestras oscuras muestran fuertes evidencias de metamorfismo anterior y fusión", destaca Sharygin. El material de grano fino de los fragmentos oscuros también difiere de las otras muestras, ya que contiene "burbujas" esféricas que o bien están incrustadas de cristales perfectos de óxidos, silicatos y de metal o están llenas de metal y sulfuro.

   Sorprendentemente, el equipo de IGM también halló pequeñas cantidades de elementos del grupo del platino en la corteza de fusión del meteorito. El equipo sólo fue capaz de identificar estos elementos como una aleación de osmio, iridio y platino, pero su presencia es inusual, ya que la corteza de fusión se forma durante un periodo demasiado corto de tiempo en el que estos elementos se acumulan fácilmente.

   "Creemos que la aparición (formación) de este grupo del platino mineral en la corteza de fusión puede estar relacionada con cambios en la composición de metal líquido sulfuro durante los procesos de refusión y oxidación mientras el meteorito entró en contacto con el oxígeno del aire", explica el doctor Sharygin.

Fuente: Europa Press